
Binary
Reverse and Exploitation

By Kyle

Prerequisite

u C language

u Basic Linux shell command line

u Basic python codes

Outline

u C code to binary code

u Hello World demo

u Assembly on x86

u Overview

u Registers

u Common Instructions

u Stack Structure

u Calling Convention

u Hello World demo explanation

Outline--Continued

u Reverse Engineering

u Overview

u Tools

u Demos

u Exploitation

u Overview

u Tools

u Old School Shellcode Injection

u ROP

u ret2libc

u Demos

C code to binary code

C code to binary code

u Compile?

u Compile + Assemble + Link

u We mainly focus on assembly and c language

u Demo?

Assembly on x86

Overview

u What is assembly language – low level code for human, language for CPU

u Why assembly language – almost the same to binary code, show hidden details
of a program

Registers

u Registers are variables for CPU

Registers

u eax, ebx, ecx, edx, esi, edi: general-purpose registers(not exactly)

u esp: stack pointer

u ebp: stack base pointer

u For further information, please refer to:

u http://www.eecg.toronto.edu/~amza/www.mindsec.com/files/x86regs.html

http://www.eecg.toronto.edu/~amza/www.mindsec.com/files/x86regs.html

Common Instructions

u mov:

u mov eax, ebx// ebx à eax

u mov eax, 10// 10 à eax

u add:

u add eax, ebx// eax+ebx à eax

u sub:

u sub eax, ebx// eax-ebx à eax

u Other similar instructions like: xor, div, mul

u Other instructions like: call, leave, ret

Stack Structure

u push eax// esp-4 à esp

u pop eax// esp+4 à esp

Calling Conventions

printf(“%d\n”, 10);

push ebx ;; ebx = 10
push eax ;; eax -> “%d\n”
call printf

printf:
push ebp
mov ebp, esp
push eax
push ebx
push ecx
...
leave ;; mov esp, ebp

;; pop ebp
ret

Hello World demo explanation

Reverse Engineering

Overview

u What is RE?

u the process of analyzing a subject system to identify the system's components and
their interrelationships and to create representations of the system in another
form or at a higher level of abstraction

u Translate binary code into human readable code to understand the internal logic of
a program

u Why RE?

u Emmm. To crack license-required software, like games. To investigate malicious
programs, like virus, trojan horse

Tools

u Decompiler or Disassembler

u IDA Pro//This is the king!

u Hopper

u Debugger

u gdb and its derivatives: pwndbg, gef, (never ever use peda)

u windbg

u x64dbg

u ollydbg

u Other

u angr//brilliant tool

Demos

u Hopper demo

u IDA Pro demo

u angr demo

u reverse demo

Binary Exploitation

Overview

u What is binary exploitation

u Break through some trust boundaries by passing unexpected payload to a compiled
program

u Why binary exploitation

u Smash stack for fun and profit

u Attack is the best defense

u Applications of binary exploitation

u Dirtycow

u Wannacry(eternal blue)

u Demo

Tools

u RE tools

u Mentioned in RE section

u Utility

u ROPgadget

u one_gadget

u cyclic

u checksec

u Framework

u pwntools//This is the king!

u zio

u Binary analysis

u angr

u radare2

Old School Shellcode Injection

u No longer seen in modern operating systems

u Defeated by introducing NX(or DEP)

u Too demanding in modern operating systems: (call user input function) ||
(stack leak && control flow hijacking)

u demo

ROP(Return Oriented Programming)

ret2libc(Return into libc)

u Key idea:

u Dynamic linking

u PLT and GOT(lazy binding)

u libc is mapped in a whole

u libc is the best place to find gadgets

u libc is not as invulnerable as you may think

u This is how you usually use ROP

Study & Practice

u https://trailofbits.github.io/ctf/exploits/binary1.html

u https://github.com/shellphish/how2heap

u https://github.com/Kyle-Kyle/Pwn

https://trailofbits.github.io/ctf/exploits/binary1.html
https://github.com/shellphish/how2heap
https://github.com/Kyle-Kyle/Pwn

Q&A

Thank you

