The layman's guide to the Magic Cube

Nov. 2017

Preface and expectation

- This presentation is inspired by *Mathologer* and *Nan Ma*'s youtube videos (And you see what a layman I am, I learn stuff from youtube)
- Prior knowledge about...
 - Rubik's cube would be better
 - Group theory would be best, but not necessary

- After this presentation, you should be able to...
 - Solve many weird magic cube by yourselves, within weeks, or hours
- Show me what you got

Intro

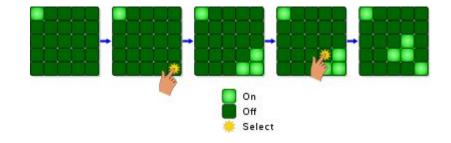
Two types of radical idea

- Magic cube is all about memorizing formulas
- It would take me years to figure out a cube by myself, which makes self-solving boring and pointless
- Formula ruins magic cube

Ladder of difficulty

Complicated \neq Complex

Which one below is more difficult?


- ???How can we define difficulties for cubes
 - God number?
 - Number of States?
 - Coupling strength?
 - Complexity theory?

Magic cube families

- Commutative puzzle
 - Light-out!
 - Rubik's clock
- Non abelian puzzle
 - Rubik's cubes
 - Some weird shaped cubes
- Bandaging(Jumbling) puzzle ("not-even-a-group puzzle")
 - Square-1 cube
 - Unfortunate twin cube
 - Clover cube

Shape-shifting are not necessarily Bandaging!

Light-out!

• General solution: Matrix Pseudo-Inversion

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \overrightarrow{\text{op.}} = \overrightarrow{\text{config.}}$$

$$\begin{array}{l} \text{In[5]:=} \\ \text{RowReduce} \left[\begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ \end{array} \right], \text{ Modulus } 2] //$$

$$\begin{array}{l} \text{MatrixForm=} \\ \\ \begin{pmatrix} 1 & 0 & 0 & 0 & | 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ \end{pmatrix}$$

- Never heard about computer? Chasing light method
- Nan ma's light out 3D

Tricks for solving non abelian cube

What is "solving a cube" and why it's hard

- Restoring states of a group of objects through definite operations
 - Not "gathering color"
 - Not "gathering color"
 - Not "gathering color"
 - **"States**": usually means **position and rotation** of various type of blocks

- Operation are not commutative ($AB \neq BA$)
- Too many blocks are involved
- Coupling is too strong/long-range

Permutation can be even odder...

- Even(odd) permutation is a permutation that realizable through even(odd) number of two-exchange.
- 3-cycle is even
- 4-cycle is odd
- ...

3-cycle can solve any even permutation

Equivalent object and Symmetry operation

• EO

Two objects are said to be equivalent

if you can't distinguish them after Tearing Off Stickers

A symmetry operation is such an action

that you wouldn't notice it if you **Tearing Off Stickers**



symmetry operand Ω can be solved, without additional effect, once you can decouple one object from it

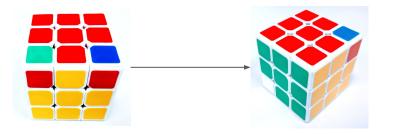
• Up to even parity

If you can

- Decouple position state: even-cycle among equivalent blocks can be constructed
- Decouple rotational state: **spin** can be exchanged

Commutator: ABA⁻¹B⁻¹

A: Decouple operation (that you invent) B: Symmetry operation on Ω A⁻¹(B⁻¹): Reverse everything you did for A(B)


- Commutator measure "how commutative two operations are"
- Commutator always involve even number of operations
- <u>An impressive youtube vedio explaining commutator</u>

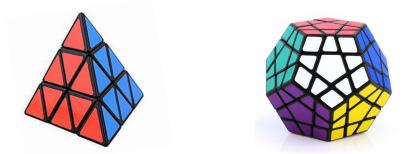
Similar transformation (Conjugate) MSM⁻¹

What if you want to solve objects that are not on Ω ?

- Find another Ω ' that involve these objects
- Or...
 - Move those objects into Ω ;
 - \circ Solve Ω by commutator;
 - Move those objects back;

"Operations before and after similar transformation look similar."

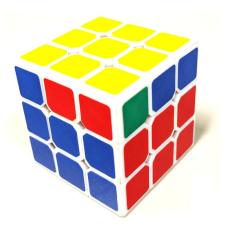
Challenge: Solve edge and corner

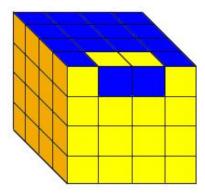


Commutator solve everything?

Recall: commutator is parity free

Problem doesn't exist if all generators are parity free


Unfortunately, many cubes (e.g. Rubik's cube) have parity, while it's not a big deal if you know **where parity comes from**.


Catch the parity: where do they come from

333 Rubik's cube parity?

444 cube: (layman's nightmare parity):

Square-1 cube parity:

General process of solving a cube

- 1. Identify features (Class, type of blocks, coupling, symmetry operations, possible sectors)
- 2. Design a solving order for different types of block (such that less steps are needed)
- 3. Solve cube up to even parity by using Commutator & Conjugate
- 4. Jump out of parity(sector)
- 5. Sometimes inventing "cheating algorithm" could also help

Remaining problems

- Not-even-a-group puzzle: how to jump out of sectors in general?
- Do all twisty puzzle belongs to P problem?
- Can you write a program that generate strategy for any twisty puzzle?
- Are there any other exciting algorithms can help develop general solutions?

Do-not-miss links and reference

http://nan.ma/

http://superliminal.com/cube/cube.htm

http://twistypuzzles.com/

https://www.jaapsch.net/puzzles/

http://oskarvandeventer.nl/index.html

https://youtu.be/B-oePE5gizs

https://www.youtube.com/channel/UC1LJGmvzWdNn_41284Aa2xQ